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A STUDY OF FACTORS AFFECTING THE ACCURACY OF
POSITION FIX FOR LUNAR TRAJECTORIES

By Margery E. Hannah and Alton P. Mayo
SUMMARY

The accuracy of the position fix as obtained from simultaneous onboard opti-
cal measurements is discussed with respect to the gradients of the measurements.
Equations for the gradients of various types of measurements in position fixing
are discussed. An approximate method for predicting the error ellipsoid for a
position-fixing system is given. The position errors are illustrated by applica-
tion of the results to a lunar trajectory.

INTRODUCTION

As part of a study in circumlunar navigation, equations were developed in
reference 1 for fixing a position from various combinations of simultaneous
onboard optical measurements. For several of these combinations, the resultant
errors in position fix due to the addition of random errors in measurement were
investigated by means of a Monte Carlo technique, and the results were reported
in reference 2. The purpose of the present paper is to extend the results of
references 1 and 2 by establishing some simple criteria for selecting those meas-
urements which give the best estimate of position, and by developing a simplified
procedure for estimating the accuracy of the position fix.

The ability to fix the position within prescribed limits is determined by
the accuracy of the measurements, which in turn is dependent upon the accuracy of
the instruments and the rates of change of the measurements. The rate of change
of the measurement with position, referred to as the gradient of the measurement,
has direction as well as magnitude. From a knowledge of the gradients, the direc-
tion of maximum and minimum accuracy for a given combination of measurements can
be determined. The direction of maximum accuracy (direction of minimum error)
and the magnitude of the error should be considered in any position-fixing system.
For example, if it is desired to establish an accurate altitude when a vehicle is
orbiting close to the earth, moon, or some other celestial body, a position-fixing
system should have its direction of maximum accuracy along the radius vector from
the vehicle to the body center; that is, the system should be sensitive to changes
in this radial distance. For earth-moon trajectories where it is desirable to
stay in a corridor, the direction of maximum accuracy of the system should be nor-
mal to the corridor so that any straying from the corridor may be remedied. When



accurate velocity determination is desired from position data, the direction of
maximum accuracy of the position-fixing system should be along the velocity
vector.

The linear relation between position errors and measurement errors for simul-
taneous onboard optical measurements permits the use of small-perturbation theory
in error analysis. (See ref. 2.) Hence, the present paper is based on this
theory. The equations relating measurement deviation and position deviation from
the nominal for simultaneous sightings are stated. The combined effect of meas-
urement error and the gradient of the measurement upon position error is also
presented. Standard linear error analysis techniques are used to determine the
error distribution, that is, the error ellipsoid within which lies a given per-
centage of the probable errors resulting from a position-fixing system. Subse-
quently, an error parallelepiped is shown as a simplified method of approximating
the error distribution. The position errors are illustrated by application of
the results to a lunar trajectory.

SYMBOLS

[A] orthogonal rotation matrix of eigenvectors of [E:ex]

agl|

gradient of measurement

identity matrix

—
-
S

I,E,E unit vectors along X-, Y-, and Z-axes

K values of chi square for a given probability that the error lies
inside the error ellipsoid

m measurement

Am measurement deviation from nominal, é-I-'i(Ax) + QE(Ay) + QE(AZ)

ox dy oz

€em measurement error

R radius of body on which measurements are being made

r distance from vehicle to body center

;s unit vector in star direction

€T position-error vector




At

X,Y,Z

X,¥,2
€X,€y,€2
X! ,Yl ,Z'
x',y',z"
¢4

B

cx"dy"cz'
Subscripts:
1,2,5

s

Notations:

time

clock error or error in knowledge of time

vehicle-centered right-hand rectangular coordinate axes oriented
in same direction as earth's axes (i.e., with X-axis in direc-
tion of Aries and Z-axis in direction of celestial north pole)

coordinates of a point in X,Y,Z system

error in measurement of x, y, and =z

vehicle-centered normal axes of error ellipsoid

coordinates of a point in X',Y',Z' system

one-half of angular diameter of body as viewed from vehicle

angle between gradient of a measurement and position-error vector

angle between radius vector to center of a body and gradient of
angle included at vehicle between a star and nearest horizon
point of body

angle included at vehicle between two stars

elgenvalue of covariance matrix of position errors

covariance matrix of measurement errors

covariance matrix of position errors in X,Y,Z system

covariance matrix of position errors in X',Y',Z' system

standard deviation, or standard error

standard error in measurement of x', y', and z'

refer to measurements 1, 2, and 3

star direction

indicates a vector



indicates a scalar multiplication

X indicates a vector multiplication

| l absolute value

[ square matrix
7-1

[ inverse of square matrix
5t

[ transpose of square matrix

{ } column matrix

%9 partial derivative of measurement with respect to x evaluated
X

b's at x

— partial derivative of measurement with respect to x evaluated
ox X+8% at x + 3x

VEHICLE POSITION DETERMINATION

Measurement Gradients

Because of fuel and time schedule requirements, circumlunar vehicles will
be required to fly very close to a nominal trajectory such as that of reference 3
shown in figure 1. The vehicle position in an earth-centered system is given by

the following equation:
favd
+ ¢ Ay (1)
Az,

X X
y = y
z vehicle z

The vehicle position in the general case is determined from optical and time
measurements made onboard. Under these conditions the vehicle optical and time
measurement deviations from the nominal trajectory will vary linearly with the
vehicle position deviations from the nominal trajectory as shown by:

nominal

Am = gﬂ(Ax) + %;i(Ay) ¥ S—BI:(AZ) + S%(At) (2)

X




Four measurements are required to solve for &ax, 4y, Az, and At 1in equa-
tion (2). However, for the circumlunar trip it can be assumed that the clock
error At 1is zero and that the measurement deviations reduce effectively to
functions of x, ¥y, and 2z. Thus, three simultaneous optical measurements at a
given time t may be used to determine the vehicle deviations from the nominal
trajectory. The equation used to determine the vehicle deviation is
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where the gradient of a measurement is
graam=z=zg_3z+3%+z%§ (4)

Schematic drawings of the gradient directions of possible optical measure-
ments in a vehicle-centered coordinate system are shown in figure 2. Although
these measurements are essentially of two general types, that is, angular diameter
and star-to-body, several examples are shown as illustrations. Equations for the
gradients are developed in the appendix. In the present paper the term declina-
tion denotes the declination of a body (positive north from the XY-plane of the
vehicle), and the term right ascension denotes the right ascension of a body as
measured in the XY-plane of the vehicle (positive east from the X-axis).

Error Index

A navigation measurement may be broken down into three parts: (a) the value
which should be measured if the vehicle were on the nominal trajectory, (b) the
increment of measurement due to the increment of vehicle position from the nomi-
nal trajectory, and (c) the actual error in measurement. The relation between
measurement error and position error is essentially linear over a wide range of
measurement error (ref. 2) and may be written as:

em = gﬁ(ex) + %%(ey) + %%(ez) (5)



The derivatives in this equation may be evaluated at the point x,y,z since, for
_om
x  Oxl(x+5x)

present paper were calculated as though the vehicle were on the nominal trajectory
at the time of measurement.

3n

small increments, , and so forth. Hence, all errors in the

X

Equation (5) may also be written:

em = lhlle?lcos B (6)

where er is the position error, h is the gradient of the measurement, and B
is the angle between h and eF¥. Thus, the projection of the position-error

vector €T on the gradient vector is equal to EgT as illustrated in the sketch:
h
The contribution of a measurement error to an error

in position is a vector of magnitude E%}. having

h
the direction of the gradient of the measurement. Exr

It follows that the ratio <X may be regarded as 8
h } =
an error index of the measurement. €m

If three measurements are used in fixing the lhl
position, the position error is given by the gen-
eral equation

N T 17
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For orthogonal gradients, the equation for the magnitude of the position
error reduces to:

2 2 2
€my €y €mz
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Thus, it can be seen that for fixed measurement errors and fixed gradient direc-
tions, the magnitude of the position errors is governed by the magnitude of the
gradients of the measurements. In general, navigation systems employing measure-
ments with the largest gradients will be the most accurate.

Except for the case of horizon measurements, the instrument error, that is,
standard deviation of the instrument or some integral multiple of it, may be con-
sidered to be the measurement error em. However, when measurements are made to
the horizon of a body, the indefiniteness of the horizon contributes an additional
measurement error to the basic instrument error so that

2
2, R

2w »

where op 1s the standard deviation of the measurement, o¢j is the instrument
error, and or is a constant which varies with the radius of the body. In the
present paper, o3 1s considered to be 5 X 10-5 radian and OR» 3.219 kilometers

for the earth and 0.805 kilometer for the moon (see ref. 4), except for one case
where the standard deviation is 150 arc seconds for all measurements.

Error Ellipsoid

With the assumption that the errors of position-fixing systems in clircumlunar
space are linear with respect to the measuring error for the range of measurement
errors expected (ref. 2), standard linear error analysis techniques may be used
to establish the error distribution, that is, the error ellipsoid associated with
any position-fixing system (refs. 5 and 6).

The direction of maximum accuracy (i.e., minimum error) of the measurement
system lies along the minor axis of the error ellipsocid, and the direction of
minimum accuracy, along the major axis. The error ellipsoid may be adjusted to
contain any given percentage of all probable position errors. The procedure for
obtaining it is described briefly in the following paragraphs.

For convenience, the error distribution is considered in terms of zero means
and is centered at the assumed vehicle center on the nominal trajectory. The



covariance matrix of position errors [Zer] is related to the covariance matrix

of measurement errors [Z:em] as follows:

-~ ~-1 P -ft
by hy

[Zer] = |np [ em] ho (10)
h3 h3

where [ em] is known from the characteristics of the instruments.

The theory of matrices permits an orthogonal transformation to a new set of
coordinates 1n which the new position errors are linearly independent. The pro-

cedure is to expand the determinant of [[Zer] - TIl {?}} which yields a cubic

in A, the roots of which are the eigenvalues of [Zer]. (See ref. 7.) Let the

normalized eigenvectors associated with these eigenvalues form the rows of the

matrix [A] which is an orthogonal rotation matrix (because [Zer] is symmetric).
It is to be noted that the matrix [Zer] is proportional to the reciprocal of the
matrices of references 5 and 6. Thus, the eigenvectors, [A], are equal to the
eigenvectors of the reference matrices whereas the eigenvalues, {7\} , are the
reciprocals of the eigenvalues of the reference matrices. (See ref. 7.)

If a new X',Y',Z' coordinate system is established by

Xl

X
yt) = [A] y
z! Z

then the covariance matrix of position errors in the X',Y',Z' system is given by

2] - B[ o

and [Zert] is a diagonal matrix of orx,e, o
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The frequency function of the errors is given by:

2 2 2
le Oyt O,1
f(X':Y')Z') = = e v “ (12)
(2n)>/2

ledytdzt

2 2 2\

1 1 t

The exponent X + ¥ + Z has a chi-square distribution with three degrees
gy1@ °y'2 ozﬂ?

of freedom. The equation of the error ellipsoid in the rotational reference
X',Y',Z' system is given by:

22 g2, g2

0x1? o2 g2

= K° (13)

The values of K2 for various probabilities that the position error lies
within the ellipsoid may be found from probability tables for a chi-square dis-
tribution. (See table I.)

The error ellipsoid is given in the X,Y,Z system by:

Gl -

The concept of the error ellipsoid is applicable to any number of dimensions.
(see ref. 5.) Thus, if clock error is present, the equation for the error ellip-
soid may be revised to include this. The value of chi square will then be chosen
from tables for a problem with four degrees of freedom.

Error Parallelepiped

As indicated in the previous section, the calculation of the error ellipsoid
is rather complex and lengthy. A simpler procedure for estimating the error
ellipsoid and its orientation is obtained from consideration of the measurement
error and the gradients of the measurement field. As shown in the section
entitled "Error Index," the projection of the position-error vector €¥ on the
gradient of the measurement h gives the error index of the measurement.



Thus, for two measurements the following error geometry is obtained:

The quadrilateral contains all position errors due to measurement errors
equal to or less than *em; and zZemp with gradients h; and hp, respectively.

If three measurements are involved, the figure becomes a parallelepiped, but the
same procedures apply.

Thus, if the gradient direction and error index of each measurement are
known, then an error parallelepiped may be constructed by passing planes normal
to each gradient at a distance from the origin equal to the magnitude of the
error index. If measurement errors of lo are assumed, the error parallelepiped
contains all lg position errors due to all three measurements.

RESULTS AND DISCUSSION

Error Ellipsoid and Error Parallelepiped

Figure 3 presents a 30 error ellipsoid and a 3¢ error parallelepiped cal-
culated from measurements of angular diameter, declination, and right ascension.
These were calculated for a vehicle on the outbound leg of the lunar trajectory
shown in figure 1. For these calculations, the earth's coordinates were:

x = 16,100 kilometers, y = 104,610 kilometers, and z = 59,550 kilometers. A
standard error of 150 arc seconds was assumed for all measurements.

Also shown in figure 3(a) are 200 position errors obtained by the Monte Carlo
method of error analysis. It is of interest to note that all except four of the
position errors fall within the error parallelepiped. These four position errors
are also outside the error ellipsoid boundary.

A comparison of the error ellipsoid and error parallelepiped shows that the
direction of the gradients of the measurements defines the orientation of the
axes of both the error ellipsoid and the error parallelepiped.

The maximum position error calculated by means of an error parallelepiped
and an error ellipsoid is shown in figure 4. The position error was calculated
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from measurements of the angular diameter of the earth and the angles included

at the vehicle between each of two stars and the earth's center. A lo instrument
error was assumed. The vehicle was outbound on the lunar trajectory shown in
figure 1. Figure 4 shows that the position error calculated by means of the error
ellipsoid is considerably greater than that calculated by means of the error par-
allelepiped. If a 50 instrument error had been assumed in the calculation of pos-
ition error, the curves would be in much better agreement, as can be shown by
equations (7) and (13).

Correction for Nonsimultaneous Measurements

The navigation error has been calculated by using small-perturbation theory
with the assumption that measurements are made simultaneously. However, when
navigation measurements are made manually, simultaneous measurements by a single
operator are impracticable. Hence, the increment in time must be taken into
account in determining the position fix (ref. 1) as well as the error
distribution.

Figure 5 shows rates of change of various measurements with time, calculated
at points along the lunar trajectory shown in figure 1. The curves shown in fig-
ure 5 were obtained from the following equation:

(15)

In the figure a solid line indicates that dm/dt is positive; a broken line,
that dm/dt is negative; and a skip, that dm/dt changes sign. From the fig-
ure it can be seen that dm/dt varies considerably with distance as well as with
type of measurement.

Over a large part of the trajectory this type of figure may be used to pro-
vide a correction to the measurements used in a position-fix system when the
increment of {time between measurements is small. For example, if the declination
and angular diameter of earth are measured at time t3 and 14, respectively, and
it is desired to find the position and the error distribution at time ta, the
declination may be corrected by taking the declination read at time tq and
adding to it a correction (tg - t3) multiplied by the average rate of change of
the declination for the time interval chosen.

The position-fix equations are then solved with the angular measurements
corrected to time 1tg5. The error distribution is calculated by using the values
of x, ¥y, and 2z obtained from the corrected equations. Over a large portion
of the trajectory, if the time between measurements is of the order of 6 minutes
or less, this method gives a good first-order correction to compensate for the
effect of nonsimultaneous measurements.

11



Selection of Measurements

The direction of maximum accuracy of the measurement system has been shown
to lie along the minor axis of the error ellipsoid or the minimum axis of the
error parallelepiped. This direction can be determined from a knowledge of the
error indices and of the gradient directions of the measurements used.

The magnitudes of the gradients of several measurements which may be made of
the earth or the moon from the vehicle during a lunar trip are shown in figure 6.
The measurements are: angular diameter, declination and right ascension of the
earth or moon as seen from the vehicle, and the angles included at the vehicle
between the lines of sight from the vehicle (a) to a star and to the earth (or
moon) center, (b) to a star and to the nearest horizon point of earth (or moon),
and (c) to a star and a beacon orbiting about the earth (or moon). The use of
star-and-landmark techniques would result in gradients equivalent to those
obtained by using star-to-body-center techniques. The gradients shown in fig-
ure 6 were calculated at points along the trajectory shown in figure 1. Equa-
tions for both magnitude and direction of the gradients are given in the appendix.

Figure 7 shows the error indices of some of the measurements whose gradients
are shown schematically in figure 2. The measurement error for an assumed instru-
ment error of lg and the gradients of the measurements were calculated at various
points on the outbound portion of the trajectory shown in figure 1. Both meas-
urement errors and gradients vary widely along the trajectory with the greater
variation occurring in the gradients. It is therefore clear that measurements
with large gradients should be used if the error is to be kept a minimum. Even
though instrument error is very small, the position error will be large if the
gradients of the measurements are also very small.

Figure 7 shows that the type of measurements yielding the greatest accuracy
may change rapidly. From the figure it is seen that there is a point on the
trajectory where moon measurements result in greater accuracy than earth meas-
= e
b lmoon b learth
and 55 percent of the distance from earth to moon for all measurements investi-
gated except the angular diameter. The error indices of the angular diameter
(too large to be shown in the figure) indicate that the switch from earth to moon
measurements should take place about 69 percent of the distance. Since these
results pertain to single measurements, it should be noted that the point at
which moon measurements yield the greater accuracy will vary when a combination
of measurements is used. (See ref. 2.)

€m

urements, that is, . This point occurs somewhere between 50

In any position-fixing system, those measurements whose gradients have the
proper direction and magnitude to assure the desired direction of maximum accuracy
should be made. In cases where it is impossible to obtain a measurement gradient
in the desired direction with a single measurement, two measurements may be com-
bined (not necessarily a proportional combination) to form a single measurement.
The resultant gradient is the vector sum of the gradients of the measurements
included in the combination and is governed by the proportionality factors.

These measurements are subject to the same error analysis as before; however, in
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the present paper no analysis has been made of the resultant error of such
combinations.

Position Error

By using different methods of fixing a position, two attempts were made to
find the effect of the gradient directions relative to each other upon position
error. The results are shown in figures 8 and 9. In figure 8 the errors were
calculated by using gradients of the angular diameter and of the angles included
at the vehicle between each of two stars and the earth's center. Both stars were
in the XZ-plane, and the earth was on the Y-axis. One star was rotated through
the angle 6 about the line of sight from the vehicle to the other star. Thus,
the gradient of the angular-diameter measurement was always perpendicular to the
gradients of the angles between each of the two stars and the earth's center.

The gradients of the angles between each of the two stars and the earth's center
were separated by the angle 6. (See appendix.) It is to be noted that for this
case (for error-ellipsoid calculations) the only factor affecting the error is r,
the radial distance of the vehicle from the earth's center. The error indices for
both the angular-diameter and star-to-body-center measurements are functions of

r, but as shown in figure 7

[}

>>
angular diameter

en
h

h

star-to-body-center

Therefore, the angular-diameter measurement contributes practically all the error
to the position vector, and the effect of the relative directions of the gradi-
ents of the other two measurements is indiscernible.

Figure 9 shows the effect upon the position error of gradients approaching
a coplanar condition. The error was calculated from the gradients of the angles
included at the vehicle between the earth's horizon and each of three stars
equally spaced about the vehicle in the XZ-plane. The earth was located on the
Y-axis, and measurements were made at various points between the earth and moon.
The angle 7, defined as the angle between the gradient of the measurement and
the radius vector to the earth's center, is equal for all three measurements and

em

h
tance, the error has been divided by the error index in order to remove the
effect of random error and gradient magnitude from the results. The ratio of
error to error index is seen to be a maximum when the gradients are coplanar
(¥ = 0). The minimum value occurs at 7 = 54.7° where the gradients of the
three measurements are orthogcnal.

varies along the trajectory. Since the error index also varies with dis-

13



CONCLUDING REMARKS

On a lunar trajectory the accuracy of position fix is dependent upon the
instrument accuracy and the particular measurements used. The types of measure-
ments as well as the particular combinations of measurements giving the greatest
accuracy vary considerably along the trajectory. The construction of an error
parallelepiped provides a simple means for estimating the accuracy of a position
fix. The error parallelepiped which has the same orientation as the error ellip-
soid is easily determined from a knowledge of gradient magnitude and direction.

In general, the following criteria should be observed in order that the
error may be a minimum for a position-fixing system based on simultaneous onboard
optical measurements in earth-moon space:

(a) The minor axis of the error ellipsoid should be oriented to the
desired direction of greater accuracy in position fix.

(b) The error indices should be small. This implies large gradients
for the measurements. It follows that since gradients of angular
diameter are small over a large portion of a lunar trajectory,
other measurements should be used over most of the trajectory,
if possible.

(¢) If possible, gradients of measurements used should be orthogonal.
In no case should they be coplanar.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., October 16, 1963.
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APPENDIX
GRADIENT EQUATIONS

The gradients of the measurements control the error of position. The gra-
dients are determined by taking the directional derivatives of the measurements.
For instance, when the vehicle center is taken as the origin of the coordinates,
the gradient of o 1is given by

E-TX, 7R, X (A1)
ox oy oz

Substituting

o = tan~t ———— (A2)

B=1 R +3 i) + & Rz (a3)

re(re . R2)1/2

- R
5| - (Ak)
1/2
r(r2 - R2)
where R 1is the radius of the body on which measurements are being made. From

the equation lEll?lcos B = h . T it can be shown that the gradient lies along

the radius vector connecting the vehicle with the center of the body. This gra-
dient vector is shown diagrammatically in figure 2(&).

The gradient vector for the angle included at the vehicle between a star
and the body center (fig. 2(b)) is given by

15



_ - x(T - Tg) - xer = y(F - Te) - ver? - 2(F - To) - zor2 o
X X X

where Tg refers to a unit vector in the star direction

X = re\j;e - F -5 (A6)

hence, the magnitude of the gradient 1is

= _1
& - 2 (A7)
Since
h-FT=0 (A8)
and
- (?x?s) -0 (49)

it follows that the gradient of the measurement is in the plane of the radius
vector and the star and is perpendicular to the radius vector.

The gradient vector for declination (fig. 2(c)) is given by

_ - - - - - 2 - g2
=1 2x ; +3 2y ; + -z ; (A10)
1/2 1/2 1/2
re(r2 - z2) re(r2 - 22> rg(r2 - zg)
and the magnitude of the gradient is
= 1
hl -1 All
BHEE (a11)

This gradient is in the plane of the radius vector and the Z-axis and is per-
pendicular to the radius vector.

16 .




The gradient vector for right ascension (fig. 2(d)) is given by

=7 -y Y X =
h = (;———2 " y2> + J<X————2 - y2> + k(0) (A12)

and the magnitude of the gradient is

IHI - w (A13)

It can be shown that this gradient is parallel to the earth's equatorial plane
and perpendicular to the radius vector.

For star-to-horizon measurements (fig. 2(e)), the gradient vector is given

by

_ —- X(F . ?S - Xsr2 Rx — y(? . FS) - ysr2 m

h =1 X + + +

1/2 1/2
2 (re - Re) / 72 (re - Re) /
_ z(? 'FQ - zsr2 Rz
+k ” + 7z (A1lk)
2 (re - Re)

where X has been previously defined. Thus,

‘h| = m (A15)

This gradient is perpendicular to the line connecting the vehicle with the hori-
zon of the body and lies in the plane of the vehicle, star, and horizon point
nearest the star.

For a star to a given point x,y,z, such as an orbiting beacon or landmark
(fig. 2(f)), the gradient of the angle included at the vehicle between a star
and a point may be obtained from the formula for the gradient of the angle
included at the vehicle between a star and body center by substituting the

17



coordinates of the point for the coordinates of the body center. The gradient
vector is in the plane of the star, the vehicle, and the point, and is perpendic-
ular to the radius vector drawn from the vehicle to the point.

18
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TABLE I

VALUES OF K2 FOR VARIOUS PROBABILITIES THAT

THE POSITION ERROR LIES WITHIN THE ERROR ELLIPSOID

Probability, K2

percent (a)
2 S 1.212
BO v e e e e e e e e e e e e e e e e e e e e 2.3%65
<Y< Y 3.534
G 4.109
00 v v v bt e e e e e e e e e e e e e e e e e e e 6.250
05 v e e e e e e e e e e e e e e e e e 7.812
Y s I 715

8yalues of K2 may be found in a chi-square distribu-
tion table for three degrees of freedom.
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Figure 1.- Lunar trajectory used in analysis of navigation methods. Trajectory 2 of reference 3.
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